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Abstract 

A fine moduli superspace for algebraic super Riemann surfaces with a level-n structure is con- 
structed as a quotient of the split superscheme of local spin-gravitivo fields by an 6tale equivalence 
relation. This object is not a superscheme, but still has an interesting structure: it is an algebraic su- 
perspace, that is, an analytic superspace with sufficiently many meromorphic functions. The moduli 
of super Riemann surfaces with punctures (fixed points in the supersurface) is also constructed as 
an algebraic superspace. Moreover, when one only considers ordinary punctures (fixed points in the 
underlying ordinary curve), it turns out that the moduli is a true superscheme. We prove furthermore 
that this moduli superscheme is split. 
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1. Introduction 

The computation of  the quantum scattering vacuum amplitudes in Polyakov's  bosonic 

string theory [21] requires an integration over a compactification of  the moduli space of  

Riemann surfaces that represents the string world sheet. Furthermore, the matrix elements 

of  vertex operators, that appear as points of  the world sheet, provides the N-point  Green 

functions of the theory, thus requiring that the right space of  integration to compute the 
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correlation functions of  the theory is a compactification of the moduli space of punctured 

Riemann surfaces (Riemann surfaces with a fixed family of ordered points). 

The compactification of  the moduli space has the effect that Polyakov's measure has 

poles at the boundary. One of the reasons behind the introduction of  supersymmetry in 

string theory was to be able to define a new measure with a fermionic component that com- 

pensated the poles. Friedan suggested the supermoduli or moduli space of super Riemann 

surfaces, briefly called SUSY curves, as the natural framework for the formulation of the 

amplitude integral in superstring theory [ 13]. This supermoduli has been widely consid- 

ered in the physical literature on supersymmetry, but its global geometric structure still 

lacks of  a systematic study. There are analytic constructions of  local nature that give the 

supermoduli space as a super-orbifoid (see [4,18] and [2,3,14] for similar descriptions for 

punctured SUSY curves). The letter [5] contains the necessary ideas to obtain globally a 

moduli superspace as an algebraic superstack constructed from Deligne-Mumford's  moduli 

algebraic stack of stable smooth curves [6]. A coordinate description of a similar kind of 

moduli superspace, without attempting to formalize its structure, is contained in [1 1]. 

In this paper we give a new construction of a supermoduli space for SUSY curves as an 

algebraic superspace, with techniques and methods of Algebraic Geometry; this allows for 

global constructions in a natural way. Algebraic superspaces are defined here for the first 

time, and they are the graded objects corresponding to Artin's algebraic spaces [1,16]. 

As Deligne suggested, the category of superschemes, that is, schemes with a graded struc- 

ture in the sense of Berezin-Leites-Kostant, is not wide enough to contain the supermoduli 

spaces of SUSY curves. The larger category of algebraic superspaces seems to be the natural 

arena for that problem: Artin's algebraic superspaces are quotients of 6tale equivalence rela- 

tions of superschemes, then very particular instances of algebraic superstacks, which means 
that the category of  algebraic superstacks is too big for our purposes. Moreover, algebraic 

,superspaces still enjoy a rich geometric structure: In the non-graded case, algebraic spaces 

have an underlying analytic space with sufficiently many meromorphic functions, more 

precisely, they are Moisezon spaces, that is, analytic spaces whose field of meromorphic 

functions has trascendence degree equal to the dimension. Moreover, Moisezon proved that 

every Moisezon space is the underlying analytic space to an Artin's algebraic space [19]. 

One might then think of algebraic superspaces as analytic superspaces with a sufficiently 

large field of  meromorphic superfunctions. 
We always consider proper smooth curves of genus g > 2 with a level-n > 3 structure. 

Our first main result is: 

(1) There is a tine moduli space in the category of algebraic superspaces for the sheaf 
functor S of SUSY curves; in other words, $ is isomorphic to the functor of the points 
of an algebraic superscheme. Moreover, the moduli superspace has dimension (3g - 

3, 2g - 2). 
The next step is to consider NS (Neveu-Schwarz) punctures the SUSY curves in 

the [3,14]. sense of For a relative SUSY curve, that is, a family of SUSY curves de- 

pending on hosonic and fermionic parameters, a NS puncture is merely a section of  
the family. It can be locally described in relative conformal coordinates as 'fixing a 
graded point', (z, 0) ~ (z0, 00). This imposes one more even and one more condition 
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tO automorphisms of  a neighborhood around the marked graded point that are allowed. 

The Lie algebra of  conformal supervector fields is changed, and within the operators 

formalism, the change is interpreted as the insertion of  a vertex operator at the point. 

It has also the effect of  increasing by one both the even and the odd dimension of  the 

supermoduli. Our second result is: 

(2) Letuscons ider thesheaf functor8  N ofN-puncturedSUSYcurves ,  thatis, SUSYcurves 

with N graded fixed points (sections). There is also a fine moduli space for this functor in 

the category of  algebraic superspaces. The moduli superspace for N-punctured SUSY 

curves has dimension (3g - 3 + N, 2g - 2 + N). 

We can achieve a supermoduli space which is a true superscheme if we introduce 

the notion of N-punctured SUSY curves. For a family of SUSY curves depending 

on bosonic and fermionic parameters, a T-puncture consists of  fixing a section of  the 

underlying ordinary family of  curves. It can be locally described as 'fixing an ordinary 

point', z ~ z0. The supermoduli for "i-punctured SUSY curves depends then on one 

more even parameter, though the odddimension remains unchanged. 

N-punctures are introduced merely for technical reasons, as no previous physical 

correspondent is known to us. One might think that they correspond to insertion points 

of  bosonic vertex operators. Our third result is: 

(3) The sheaf functor 8 9 of  N-punctured SUSY curves is representable by a true super- 

scheme of dimension (3g - 3 + N, 2g - 2). Moreover, this fine moduli superscheme 

is split, that is, its structure sheaf is an exterior algebra. 

The last result gives then a partial answer to the open question of the splitness of  the 

moduli space for SUSY curves [10,11,18]. 
There are two problems related with the integration over these moduli algebraic super- 

spaces. The first one is finding the right compactification. The natural candidate is the super 

correspondent for Deligne-Mumford compactification of  the moduli of  smooth curves by 

means of  stable curves. We do not deal with this question in this paper, as we always consider 

proper smooth curves. A second problem is the definition of  a suitable Polyakov's super- 

measure on the moduli superspace. At this point the introduction of  the category of  Artin's 

algebraic superspaces proves its usefulness. In former approaches, moduli superspaces are 

super-orbifolds, and it is not easy to define volume superforms on them. The rich geometry 

of  Artin's algebraic superspaces enables us to introduce determinant bundles following the 

bosonic model. The idea is to consider the universal SUSY curve rr : P~ --~ .A// over the 

moduli algebraic superspace M and define the berezinian determinant bundles as 

Ai = Ber(•zr.og®i), 

where o2 stands for the relative dualizing sheaf of  Jr. One can conjecture that a Mumford 
formula Ai = (AI )  ®n(i) still holds. Moreover there is an isomorphism Ber(~2~) --~ A2, 

given by the computation of  the infinitesimal deformations, so that one could define inte- 

gration supermeasures on .A4 as sections of  a certain sheaf Ai ~ fl i .  Then, the integration 
problem on the moduli superspace would be reduced to a berezinian integration on the 

underlying analytic superspace. 
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The introduction of  level-n structures is a rigidification that implies the existence of fine 

moduli algebraic superspaces. Level-n structures are the algebraic analogous to homological 

markings on the curve (roughly speaking, fixing a basis 'modulo n'  of the homology) and 

have the effect of  restricting the automorphisms that are allowed. When one considers the 

moduli of  curves as a subspace of the moduli of abelian varieties, level-n structures come out 

when one considers modular forms and theta functions with characteristics. In the physical 

literature, theta functions with characteristics are related to the construction of solutions 

of soliton-type to the motion equations. One may conjecture that, if we do not fix a level 

structure, there is a coarse moduli algebraic superspace whose (closed) points correspond to 

punctured SUSY curves. Our fine moduli algebraic superspace will then be a finite covering 

of  this coarse moduli algebraic superspace. 
Another important question still pending, is the algebraic interpretation of  the R (Ramond) 

-punctures or spin nodes [3,14], that seems to be related with the compactification by stable 

supercurves of  the moduli algebraic superspaces of  punctured SUSY curves. 

The work is in progress in these directions. 

The paper is organized as follows: In Section 2 we summarize the basic definitions about 

SUSY curves (classical or punctured) in the category of  superschemes. SUSY curves are 

then families of supercurves whit a conformal structure, and we consider different types 

of  punctures on them: N-punctures, that is, points (sections) in the family of  supercurves, 

corresponding to bosonic-fermionic superstring states, and N-punctures, that is, points 
(sections) in the underlying family of  ordinary curves corresponding to bosonic string 

states. We also give the definitions of 6tale morphism and &ale covering for superschemes 

that enable us to consider an &ale topology of superschemes. This will be needed in the 

subsequent sections, mainly in connection with the representability problems involved. 

In Section 3 we discuss these objects for the category of  ordinary schemes. We define 

the functor of  spin curves, that is, (relative) curves X ~ Y with a (relative) spin structure 
KI/2 x~ v, i.e., a square root of  the (relative) canonical sheaf. For curves of  genus g _> 2 with a 
level-n structure (n >_ 3), we prove the existence of  a fine moduli scheme Ms of dimension 

3g - 3 with a universal curve Xs --~ Ms. From this fact, we deduce that the N-fold fiber 

product of  Xs over Ms represents the functor of  N-punctured spin curves. 

In Section 4 we define the functor of  SUSY curves and we prove that the restriction of 

this functor to the category of  ordinary schemes is simply the aforementioned functor of  

spin curves. Analogous statements for punctured SUSY curves are also considered. 

Section 5 is devoted to the study of  the properties that a superscheme .At representing 
the functor of  SUSY curves should have if it would exist. We start with the proof that the 

underlying ordinary scheme to such a A/t is the moduli scheme Ms, and then we describe .A4 
locally from its infinitesimal deformations. This implies that A/I must be locally isomorphic 

• 3 /2 , ,  ( X s ,  K 1/2) is with the superscheme of  local spin-gravitivo fields (Ms, A ~s ), where a 
(local) universal spin curve over Ms, and K 3/2 = Ks ® Ks 1/2 is the locally free sheaf of rank 

2g - 2, whose sections are the gravitino fields. We finally quote two fundamental theorems 
from [ 18] that are on the base of the subsequent constructions. 

Section 6 contains the first two main results: there is an &ale equivalence relation in the 
functor of  points of the local spin-gravitino structures, whose quotient is precisely the sheaf 
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functor of  SUSY curves $.  This does not imply that S is representable in the category of  

superschemes, but leaves us in an analogous situation to the one that leads to the definition 

of  Artin's algebraic spaces. Following Artin's idea, we give the basic definitions of  the 

new category of  algebraic superspaces and restate the previous results as a theorem of 

representability for S by an algebraic superspace of  dimension (3g - 3, 2g - 2). We also 

prove that there exists a fine moduli space for the functor S N of N-punctured SUSY curves 

in the category of  algebraic superspaces and that it has dimension (3g - 3 + N, 2g - 2 + N). 

In Section 7 we consider the moduli scheme X y of/V-punctured spin curves. There is a 
universal spin structure ( x N / X  N, 7"s) and we construct in a natural way an invertible sheaf 

L representing Ts from the theta divisor of  the Jacobian. This enables us to define a split 

superscheme Xs N = (X N , / ~  Jr,(/, ® x)) which has dimension (3g - 3 + N, 2g - 2). We 

finally prove that this superscheme is a fine moduli scheme for the functor of/V-punctured 

SUSY curves. 
Some of the results in this paper generalize theorems in [7]. 

2. SUSY curves over algebraic superschemes 

We consider only superschemes P( = (X, .A) in the sense of  Berezin-Leites-Kostant, 

whose underlying scheme X is of  finite type over the field of the complex numbers. 

By a curve X~ Y we always mean a proper smooth morphism X ~ Y of  relative dimen- 

sion 1. 
We shall denote by X / y  a family rr : (X, .4) -+ (Y,/3) of  proper smooth supercurves of  

(relative) dimension (1, 1) and fixed genus g, in the sense that the underlying curve X~ Y 
has genus g (see, for instance, [9, Definition 3]). 

Definition 2.1. A conformal structure 79 over 2/3;  is a locally free submodule 79 of  rank 

(0, 1) of  the relative tangent sheaf Der ..4//3 such that the map 

[.] rood 
79 ®A D > (Der A/ /3) /D 

is an isomorphism of .A-modules. 
The couple ( X / y ,  D) is called a super Riemann surface, a super symmetric curve, or 

briefly, a SUSY curve [9, Definition 8;18]. 

When y = Y is an ordinary scheme, then X is trivial, in the sense that X = (X, A o  L) 

for some invertible sheaf L over (X, (.9). Then the existence of a conformal structure 7) 

on X~ Y is equivalent to the existence of  an isomorphism of O-modules L ®o L "" xx/r,  
. 1 / 2  

where xx/r  is the (relative) canonical sheaf, that is, L is a spin structure L = Kx/r on the 

underlying scheme X. D and L are related by the expression D ®A (.9 ~ L -  I. 
A morphism of supercurves over y ,  q~ : X ' / y  ~ ?(/y,  induces a morphism of /3 -  

modules 4~, : Der .A'//3 ---> q~* Der .A//3 = Der A//3®A.A', and then, a conformal structure 
79' on X' /3/  defines a subsheaf ~,D' of Der A//3 ®A .4'. 
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Definition 2.2. Let (2(/32, D) and (2('/3;, D') be SUSY curves over a superscheme y .  A 

morphism of SUSY curves over 3; is a morphism of supercurves over 3;, ~b : 2 ( ' / y  --+ 2(/3;, 

such that O,D '  c_ 79 ®,4 A' .  

We can then consider the category of  super Riemann surfaces or SUSY curves of  genus 

g over a superscheme y .  

The automorphisms of  a SUSY curve (2(/3;, D) are the automorphisms r of 2(/3; as a 

supercurve over 32 such that 79 and r , D  define the same subsheaf of  Der,A//3. In particular, 

for a SUSY curve over an ordinary scheme, that is, a supercurve of  type (X, A o  L ) / Y  
together with an isomorphism of O-modules L ®o L ~-~ xx / r ,  an automorphism is merely 

a pair r = (to, rl),  where r0 is an automorphism of the underlying family of  curves X / Y  and 

rl is an automorphism of L as a sheaf of complex vector spaces, such that the isomorphism 

L ® o  L -~ xx /r  is preserved (in particular, if ro -- Id then rl ---- 4- Id). 

Definition 2.3. A N-puncture on a supercurve rr : 2( -~ y is an ordered family (sl . . . . .  SN)  

of sections si : Y ~ X of ~r. A N-punctured supercurve is supercurve endowed with a N- 

puncture. Morphisms of  N-punctured supercurves over y are morphisms of supercurves 

over y commuting with the ordered sections. 

Definition 2.4. A/V-puncture on a supercurve Jr • 2( --> y is an ordered family (SI . . . . .  S N )  

of sections Si ' Y ~ X of  the underlying projection X --~ Y. A/V-punctured supercurve 

is a supercurve endowed with a N-puncture. Morphisms of N-punctured supercurves over 
y are morphisms of  supercurves over y whose underlying ordinary morphism commutes 

with the ordered sections. 

Note that for a supercurve over an ordinary scheme Y, N-punctures and/V-punctures 

coincide. 

R e m a r k  2.5. Families of  N unordered points of  a supercurve can be parametrized by a 
superscheme, the N-symmetric product (see [8,9]). They can be identified with positive 

superdivisors [8] or supervortices [9] of the corresponding conjugate curve. 

If X is a superscheme, we denote by X ° the functor of  points of  X, defined by 

X ' ( y )  = n o m ( y ,  X) 

for every superscheme 3;. If  X, y are superschemes, there is a one-to-one Yoneda corre- 

spondence 

Hom(X,  y )  -~ Hom(X*,  y ' ) ,  

where the Horn in the first member stands for morphisms of  superschemes and in the second 
member for morphisms of  functors. 

Definition 2.6. A functor y --~ .Y'(y) over the category of  superschemes is representable 
if there is a superscheme .M and a functor isomorphism .M ° -% 3 r 
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At this point, we fix a Grothendieck topology on the category of superschemes [ 15]. This 
topology is the natural generalization of the 6tale topology of schemes. To this end we need 
the following definition. 

Definition 2.7. A morphism X -+ 3; of superschemes is 6tale if the underlying morphism 
of schemes X -* Y is 6tale. A morphism V -~ 3; of superschemes is an 8tale covering 
if the underlying morphism V -* Y of schemes is an 6tale covering. The 6tale topology 
of superschemes is the Grothendieck topology whose coverings are the 6tale coverings of 
superschemes. (See, for instance, [ 16] for the relevant definitions.) 

Definition 2.8. An 6tale equivalence relation of superschemes is a categorical equivalence 
relation 7¢~L/o f  superschemes whose morphisms are 6tale coverings [ 16, Definition 1.5.1 ]. 

Representable functors ~ are sheaves for the 6tale topology in the sense that their value 
on a superscheme 3: can be recovered from the values over an 6tale covering V of the 
superscheme and on the fiber product ~; x y F. This means that there is an exact sequence 
of sets: 

~-(Y) ~ : '(V)::~:-O; xy  V), 

that is, ~'(3;) is mapped isomorphically onto the set of coincidences of the two arrows 
:(~):zC.?-(V xy V). 

If one attempts naively to define the functor o f  S U S Y  curves by associating to any 
superscheme y the set of automorphisms classes of SUSY curVes ( X / y ,  1l)) of genus g 
over it, this functor cannot be representable since it is not a sheaf. This is usually caused 
by the presence of automorphisms; when there are automorphisms, curves defined over 
different open subsets can be identified in many ways on the intersection, and then, the 
cocycle condition (the sheaf condition) that one needs in order to build a curVe defined on 
the whole base scheme may fail to be fulfilled. 

In the following sections we deal with this problem. 

3. SUSY curves and spin curves over ordinary schemes 

Let us consider, as a first step, what a right definition for the functor of SUSY curves 
over ordinary algebraic schemes could be. There is a morphism of functors: 

{ Automorphism classes }ofOfgenusSUSYg curVeSover Y ~ { Automorphism classes ] o f  genus°f curVeSg over Y 

(x, A o  L ) / r  ~ x~ v 

whose fiber functor is the functor of spin structures on X~ Y, that is, the functor over the 
category of Y-schemes that associates to every scheme T~ Y the automorphism classes of 
SUSY curves ( X × r T, A L ) / T. 
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None of  these functors is a sheaf. In the case of  the 'base functor ' ,  that is, the moduli 

functor of  curves of genus g, this is due to the presence of  automorphisms. This problem is 

circumvected by rigiditication, that is, by fixing additional data in the curves that automor- 

phisms must preserve. We can fix these data so that curves endowed with them have not 

automorphisms other than the identity. A usual choice is: 

Definit ion 3.1. A level-n structure on a ordinary curve re : X ~ Y is an isomorphism 

between the n-torsion of the Jacobian variety of  the curve and the group F (Y, R lzr.~_n). 

Then a Serre 's lemma [20] claims that for n > 3, an automorphism that preserves a fixed 

level-n structure over X / Y  is the identity. From this result, one proves that for g > 2 and 

n > 3, the moduli functor 

y ~,_~ { Automorphism classes of curves X/  Y ] 
of genus g with a fixed level-n structure 

is representable in the category of  schemes. 

In the case of  the 'fibre functor' ,  that is, the functor of spin structures T ~ (X x v 

T,/~ L)/T,  the problem is of different nature. We obtain a sheaf proceeding along the same 

line that leads to the definition of the relative Picard functor. Let us recall this definition: 

Given X~ Y, we can consider the functor over the category of Y-schemes that associates 

to every scheme f : T ~ Y over Y the quotient group Pic(X × r T)/ f* Pic T of the 

equivalence classes of invertible sheaves over X × r T modulo pull back of  invertible sheaves 

over T. It is a presheaf for the &ale topology, and the relative Picard functor is defined as 

the associated sheaf Picx/v for the 6tale topology (see [15]). The relative Picardgroup is 

then defined as the group of  sections of  the Picard functor over Y, Pic X / Y  = 79icx/r (Y). 
Classes [L] of  invertible sheaves on X modulo f *  Pic T define elements in Pic X~ Y, and 
when there is a section Y ~-+ X of  X/Y,  one has y ---- [L] for every y ~ P i c  X~ Y. In general 

an element y may not be defined by a invertible sheaf, but there exists an 6tale covering 

p : Y' --~ Y such that p*?, = [L] for certain invertible sheaf L on X x r Y'. Although 

elements in Pic X~ Y may not be classes of  invertible sheaves we shall make free use of the 

expression 'an invertible sheaves class in Pic X~ Y'. 
The Picard functors Picd/r of 'invertible sheaves classes of  relative degree d '  are rep- 

resentable, in the sense that there exist projective Jacobian schemes Jd(X/Y) --+ Y and 

a universal ' invertible sheaves class '  Td EPic d (X x r jd ( X / y ) / j d  (X/Y)) such that for 

every Y-scheme T ~ Y there is a functorial isomorphism 

Hom(T, jd(x/Y)),-,.* Pic(X ×r T/T) 

(see [ 15]). 

As a first approach to our problem, we can then consider the following alternative 

definition: 
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Definition 3.2. A spin curve over an ordinary scheme Y is a curve X --~ Y of genus g 

endowed with a level-n structure, and a 'invertible sheaves class' 7" 6 Pic X~ Y such that 
y 2  = [Kx/y].  

Note that when there is a section of  sr : X ~ Y, then Pic X ~ Pic X~ Y is an epimor- 

phism and the 'relative spin structure' has the form 7" = [L] for some invertible sheaf L 

on X. However, the sheaf L may still not be a spin structure. 

On the other hand, since 7r.Ox --~ Or, if there is a spin structure L c 7", any other spin 

structure in the same class has the form L ® rr*L' for an invertible sheaf L'  on Y with 
L '2 = (Qy. 

Definition 3.3. The functor of  spin curves is the functor on the category of ordinary 

schemes, given by 

{ Isomorphism classes of spin-curves (X /  Y, Y )  } 
Y " ~  Sspin (Y) = of genus g with a level-n structure 

Similarly, the functor of  N-punctured spin -curves is defined as 

~" [ Isomorphism classes of N-punctured } 
Y " ~  Sspin(Y) = spin curves (X /Y ,  Y )  of genus g with a level-n structure " 

Theorem 3.4. If  g > 2 and n > 3, the functor of spin -curves Sspin is representable by a 
scheme Ms. There is a universal curve Xs/Ms of genus g with a level-n structure, and a 
universal element 7-s c Pic Xs/ Ms with T 2 = [KXs/Ms ], such that for every scheme Y there 
is a functorial isomorphism 

Hom(Y, Ms) --% Sspin(Y) 

¢p ~ (¢p*Ms, ~0*7-s). 

The moduli scheme of spin curves Ms is quasi-projective of dimension 3g - 3. 

Proof. The representability of the moduli functor of  ordinary curves of  genus g with a 

level-n structure means that there is a moduli scheme M and a universal curve XM -+ M. 
Let jd  ~ M be the relative Jacobian of  invertible sheaves of  degree d on XM ~ M and 
Td E Picd(XM XM j d / j d )  the universal 'invertible sheaf class'. Let/z2 : jg-1 ~ j 2 g - 2  

be the morphism 'raising to two'.  The canonical sheaf xXM/Mdefines a point of  j2g-2  with 
values in M, that is a morphism M ~ j2g-2 of M-schemes. If  Ms = kt 21 [tcxM/M ] C Jg-  1 

is the pre-image of  that point, the natural projection Ms ~ M is an &ale covering of  degree 

2 2g, so that Ms is a quasi-projective scheme of  dimension 3g - 3. 

Now, one easily proves that Ms endowed with the element in ,_q'spin(Ms) defined by the 
pull back Xs = XM xM Ms ~ XM Xm j g - I  of the universal curve with the 'invertible 

sheaves class' Ys = Yg-llX~ represents the functor of spin curves. [] 

There exists an &ale covering p : Us ~ Ms, such that Xus = Xs x M~ U~ ~ Us has a 
section. Then there is an invertible sheaf L on Xu~ in the class P*Ys. Taking eventually a 
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finer covering, we can assume that Us is affine and that L 2 ~-~ Ks(= xxv~/u~). We can write 

L = x2/2. 

Definition 3.5. A trivializing covering for Ms is an &ale covering p" Us ~ Ms by an 

affine scheme U~, such that there exists a section a : Us ~ Xu~ of Xu, ~ Us and an 

invertible sheaf ~c2/2 on Xu, = Xs ×M~ Us with [x2/2] = p*Ts and (Xls/2) 2 = Xs. 

Remark  3.6. For every trivializing covering p : Us ---> Ms, the fibred product R = Us x Ms 

Us defines an &ale equivalence relation (Pl, P2) : Us Xm, Us=~Us, whose quotient (in the 

category of locally ringed spaces [ 16]) is Ms. Then, the functor of spin c u r v e s  8spin ~ Ms e 

is the quotient of  equivalence relation R" _~ Us" x m," Us" :::¢ Us" in the category of  sheaves 
of sets. 

In the case of  punctured spin curves, due to the presence of  sections of the curves X~ Y, 

one is forced to make a base-change to the product X N -- Xs x Ms. • • x Ms Xs. If we consider 
the diagram 

)iff = XsXM~ X ff > Xs 

X N ~ Ms 

there are N canonical sections of )~N __~ X N, the N diagonals (~i: x N  "+ Ss × Ms xN,  

8i(Xl . . . . .  XN) = (Xi, Xl . . . . .  XN). If we endow .~s N ~ X N with the pull back ~'s of  the 
universal 'invertible sheaves class', one has: 

Theorem 3.7. I f  g > 2 and n > 3, the functor of  Al-punctured spin c u r v e s  S~pNin is 

representable by  the (fibred) N-power  X N o f  the universal spin curve and the element 

(.~N, ]7.s) E SNin ( X N ). In other words, for  every scheme Y there is a functorial isomorphism 

Hom(r ,  Xs N) -% ,S~p~in(Y) 

-*( f(~N'XN, ")7"s, ~1 ., ~N)- ~ b ~ 0  ~/  s , "  

4. The functor of  SUSY curves  

In what sequel we fix g > 2 and n > 3 and consider only curves of genus g with a level-n 
structure. 

We have already said that only sheaves can be representable. We then defne,  

Definition 4.1. The functor of SUSY curves is the sheaf S associated to the presheaf 

Y -,~ S ( y )  = {Isomorphism classes of SUSY curves over 3:} 
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for the 6tale topology of  superschemes (Definition 2.7). Similarly, the functors of  N- 

punctured and N-punctured SUSY curves are the sheaves S N, sN  in the 6tale topology of  

superschemes associated, respectively, to the presheaves: 

y -,~ S N (y )  = {Isomorphism classes of  N-punctured SUSY curves over y}  

y ~.~ S'N(y) = {Isomorphism classes of  A/-punctured SUSY curves over y}  

For an ordinary scheme Y, the elements in S(Y)  can be described in terms of spin curves. 

If (2(/Y, 79) is a SUSY curve over Y, that is, an ordinary curve X / Y  with an invertible 

sheaf L = (79 ®.a O) - ]  and a fixed isomorphism L ® L -~ Kx/y, then (X/Y ,  [L]) is a 

spin curve in the sense of  Definition 3.2. We can easily check that this defines a morphism 

from the presheaf of  automorphism classes of  SUSY curves (restricted to the category of 

ordinary schemes) to the sheaf ,Sspin of spin curves. 

Theorem 4.2. The morphism induced between the associated sheaves is an isomorphism 

Sl{Schemes } ~ 8spin, 

that is, the restriction of the functor of SUSY curves to the category of ordinary schemes is 

the functor of spin curves. 

Proof If  (X/Y ,  7") is a spin curve, there is an affine &ale covering p : U ~ Y such that 

p*X ~ U has a section, and then p*T  = [L]. Moreover, considering eventually a finer 

affine covering, we can assume that L is actually a spin structure, L ® L -~ Kp*x/u. This 

shows that the morphism of the statement is surjective. 

To see that it is injective, let us consider two SUSY curves (X/U,  L), (X ' /U,  L') on 

an affine 6tale covering p :  U ~ Y with fixed isomorphisms 4): L ® L -~ Kx/u and 
49t: L' ® L' ~-~ Kx,/u, that define the same spin curve. We have to prove that there is an 

6tale covering q :  V ~ U such that ( q ' X / V ,  q 'L ) ,  (q*Xt/V,  q*L') are isomorphic as 

SUSY curves over V. Notice first that X --% X'  and [L] = [Lt]; then, there is an affine 

6tale covering U'  --~ U such that L '  and L are isomorphic after changing base to U'. We 

can then assume that L '  5_% L so that we have two isomorphisms 49 : L ® L -% xx /u  and 
49' : L ® L -% Kx/u. Now 49-149t is an automorphism of L ® L, and then it consists in the 

multiplication by an invertible element ~. 6 0 u  (U). If V ---- Spec Ou (U) [t ]/(t 2 _ k) and 

q : V ~ U is the natural morphism, then q is an 6tale covering, q*~. = t -'2, and t- defines 

an automorphism of q*L such that q'49' = q'49 o ([ ® {). [] 

The corresponding result for the case of punctured curves is: 

Theorem 4.3. There are natural sheaf isomorphisms 

N ~ 
Sl{Schemes} -% S{Schemes } ~ ,Sspin • 

that is, the restriction of the functors of N-punctured SUSY curves and of N -punctured SUS Y 
curves to the category of ordinary schemes coincide with the functor of Al-punctured spin 
curves. By Theorem 3.7, all these isomorphic sheaves are representable by (xN / xN ,  Ts). 
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Corollary 4.4. There is an isomorphism 

S ~ ~. S ×M" (xN)" 

of sheaves on superschemes. 

5. Towards a supermoduli of SUSY curves 

We start with the study of the geometry of  a supermoduli superscheme, understood as a 

superscheme .A,4 that represents the functor of  SUSY curves, assuming that it exists. 

One first notice that the points of  .M and Ms with values in ordinary schemes coincide. 

This implies that the underlying scheme to .A//is precisely Ms, thus fixing the even structure 

of  M .  

For the odd structure of  M ,  if .M = (Ms, AM)  and A/" = (-4M)l + (AM)~, then 

AM/A/" ~ OM~ and E = A/'/A/"2 is a locally free OM -module, such that there is locally an 

isomorphism .AM ~+ /~oM~ ~'" This means that the (local) determination of  ~" provides a 

local description of  .M. 

The sheaf ~" can be computed from the identification E* -~ (DerAM)I  ®.4M OM~ ~-~ 

(Der(.AM, OM~))j given by the exact sequence 

0 --~ Der OM~ ---> Der A M  ®AM OMs ~ E* ~ O. 

If one writes OM~[~O, el] = OM~ ®k k[~0, el], with ~i of  parity i and e 2 = e 2 = e0El = 

0, Der(AM, OM~) can be identified with the space of morphisms A M  --~ OM~[~O, ~J] 
that induces the identity on the even part of  the first component. In this identification, a 

derivation D = Do + DI (even and odd components) goes to the morphism ~bD described 

as (bD(f) = f + Do(f)eo q- ( - 1 ) l f l D i  ( f ) .  
In other words, Der(,AM, OM~) is isomorphic with the suhspace of the elements in 

Hom(M~[e0, el], AA) ~ S(Ms[e0, ~1]) whose restriction to Hom(Ms, M/f) = Horn(Ms, 

Ms) " ~ S ( m s )  = Sspin(Ms) produce the identity morphism. That is, they are infinitesimal 

deformations of the universal spin curve (Xs/M~, TO, according with the following: 

Definition 5.1. The infinitesimal deformations sheaf of an element q0 E S(Y)  is the sheaf 

on Y for the 6tale topology given by associating to any 6tale covering V --+ Y the set 
~eflnf(q~)(V) of the elements ~v c $(V[e0,  El ]) whose restriction to V is the element 4~v. 

When the element q~ c S(Y)  is the image o f a  SUSY curve (X/Y ,  ~.1/2) C S(Y) by the 

natural morphism S(Y) --~ $ (Y )  from sections of the presheaf to sections of the associated 
sheaf, we can also consider its infinitesimal deformations as a SUSY curve. We then define 

Definition 5.2. The presheaf of  infinitesimal deformations of (X/Y,/¢1/2) G S(Y) is the 

presheaf on Y for the 6tale topology that associates to an 6tale covering V ~ Y the set 
Deflnf(X/Y,  K1/2)(V) of  the SUSY curves (,~/VIE0, ell, 79) extending ( X v / V ,  tcv ,. 
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The infinitesimal deformations in DefInf(X/Y, x 1/2)(V) can be identified by means of 

the Schlessinger-Vaintrob theory [22,23] with the first cohomology group of the sheaf of  
• 1/2 

infinitesimal automorphlsms of ( X v / V ,  Ks ). This group is isomorphic with 

H I ( X v , x v  I ~ K ;  1/2) 

(see [1 1,12,18]). It follows easily that the presheaf Def ln f (X/Y ,  K I/2) is actually a sheaf. 

Moreover, one has: 

L e m m a  5.3. There is a natural sheaf isomorphism, 

Deflnf(X/Y, t¢ 1/2) __~ 79eflnf(~), 

where ~p ~ S ( Y )  is the image of  the SUSY curve ( X /  Y, ~c 1/2) E S(Y).  

Now, we turn back to the determination of the infinitesimal deformations of  the universal 

spin-curve (Xs/Ms,  Ys). 
Let us consider a trivializing covering p :  Us ---> Ms (Definition 3.5). We fix a spin 

structure Xs 1/2 on Xu~ such that [Xs 1/2] = p*Ts. 

In order to compute locally the infinitesimal deformations of  (Xs/Ms,  Ys), we have to 

compute the infinitesimal deformations of  the element ~ ~ $(Us)  defined by the SUSY 
curve (Xu~/Us, x~/2) ~ S(Us). By the above considerations: 

Deflnf(~)(Us) = HI(Xu~,  x s l @  tcs -1/2) ~* l-'(Us, Rlzr.(Xs-I @ x s l / 2 ) ) ,  

where zr : Xu~ --+ Us is the projection• The last isomorphism holds because Us is affine. 
Since the sections of  E* are the odd part of the space 79eflnf (~b) (Us) of these deformations, 

E can be locally identified with ( R l r c . ( x s l / 2 ) )  * ~ zr.(x3/2). 

Definition 5.4. The superscheme of local spin-gravitino fields on a trivializing covering 

p : Us --+ Ms is the superscheme 

u~ = (u,, A zr,~3/2), 

• 3/2 Xs 1/2 ® Ks for a spin structure K~/2 on Xu~ such that [Xs 1/2] pTs.* This where Ks = = 
superscheme has dimension (3g - 3, 2g - 2). 

The superscheme of local spin-gravitino fields on a trivializing covering of Ms is then 
the natural candidate for a 'local supermodulr  of SUSY curves. Using a generalization 
of Kodaira-Spencer theory [ 17] for deformations of  SUSY curves, LeBrun and Rothstein 
proved [18] that this is actually true. We quote some results in [18] for further use: 

T h e o r e m  5.5. Let Jr " X --+ V be an ordinary curve over an affine scheme whose classical 

Kodaira-Spencer map k s ( r )  is an isomorphism. Then for  every SUSY curve (X, O ~ x 1/2) 
over V, there is a SUSY curve (Pc', 79) over the superscheme (V, A Jr* x3/2) extending 

(X, O • K 1/2) and whose Kodaira-Spencer map ks ( fr ) is an isomorphism• 
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Theorem 5.6. Let ( ?( /V, D) be a SUSY curve whose Kodaira-Spencer map ks ( ~ ) restricts 
to an isomorphism on the underlying SUSY curve ( X, (.9 ~ x 1/2) over the ordinary scheme 
V. For every morphism of schemes 9)" Y --+ V there is a one-to-one correspondence 

I morphisms ofsuperschemes } 
y --+ Y extending ~+ 
qg : Y ---* V 

classes of SUSY curves } 
( X / y ,  D) extending 
~p*(X, 0 ~ tcll2)/Y 

6. The representability theorem for SUSY curves 

In this section we give a global description of  the functor S of  SUSY curves in terms of  

the superscheme H~ of  local spin-gravitino fields on a trivializing covering p" Us ~ Ms 

(Definition 5.4) associated to a fixed spin structure k~/2 in p*Ts • As we said before, 

we are fixing g > 2 and n > 3 and considering only curves of  genus g with a level-n 

structure. 

L e m m a  6.1. For every trivializing covering p : Us ~ Ms, there is an isomorphism of 
sheaves 

Proof Let S be the presheaf functor of  SUSY curves (Definition 4.1) and Sl{Schemes} its 

restriction to the category of  ordinary schemes. There is a natural presheaf morphism U s 

Sl{Schemes}, that maps a scheme morphism ~0 • Y ~ Us to the SUSY curve over Y obtained 
1/2 

by pull back of the SUSY curve (XuJU.~, ks ). 
We can then consider the fibred product S × &ls~h ..... j U s as a presheaf over the category 

of  superschemes. A section of this presheaf on a supercheme y is merely the pair given by a 

SUSY curve ( X y / y ,  Dy)  and a morphism of  schemes ~0: Y --+ Us, such that ( X y / y ,  Dy)  
is an extension of  ~0" (Xu~, 69 @ k~/2). 

The first member in the statement is the sheaf associated to this presheaf. Let us now de- 

scribe the second member. Since the Kodaira-Spencer  map of  the ordinary curve (Xu~/Us) 

is an isomorphism, we can apply Theorem 5.5 to the SUSY curve (Xu~, 0 @ k~/2) over U~, 

to obtain a SUSY curve 

( xu,. Itas, Ds ) 

1/2, 
on the superscheme Us = (Us, A Y/'*t(s 3/2) extending (Xu,,  (_9 ~ Xs ) and whose Kodaira-  

Spencer map is an isomorphism. Then, by Theorem 5.6, there is a presheaf isomorphism 

bt~ ~ S x Sllsch ..... ~ U~'. 

Since Us" is a sheaf, the second member is also a sheaf, and it then coincides with its 

associated sheaf S x M~ U~. [] 
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We can then identify S x M: Us" x M: Us" --~/4s" x M: Us" and define an equivalence relation 

u: ×g: U:=:t/4s 

as the trivial extension of the equivalence relation (P l, P2) : Us × M~ Us ==~ Us. Since there 

is a categorical quotient Us ×Ms Vs:::~Vs "--'> Ms, we obtain: 

Theorem 6.2. The functor  ,_q o f  SUSY curves o f  genus g >_ 2 with a level-n > 3 structure 

is the categorical quotient 

~ "  = (/4s XMs U s ) ' : t / 4 s  . ~ S 

in the category o f  sheaves o f  sets on superschernes. 

The functor of SUSY curves S can be then understood as a quotient of an &ale equiva- 

lence relation of superschemes (Definition 2.8). But even in the category of schemes, 6tale 
equivalence relations may fail to have a categorical quotient [16]. This problem is solved 

with the introduction of Artin's algebraic spaces [1,16], which are natural outgrows of 

schemes. In this larger category any &ale equivalence relation has a categorical quotient 
[ 16]. In particular, the quotient of an 6tale equivalence relation of schemes always exists as 

an algebraic space. We then mimic the definition of Artin's algebraic space as follows: 

Definition 6.3. An Artin's algebraic superspace is a sheaf Y on the category of super- 

schemes for the 6tale topology such that there is an 6tale equivalence relation 7~::~/4 of 
superschemes (Definition 2.8) and a sheaf morphism U ° --~ 3 t- that induces a sheaf isomor- 

phism ~ -~ 3 t- where G is the quotient sheaf of the induced equivalence relation 7~':::~/4 °. 
A morphism of Artin's algebraic superspaces is merely a natural transformation of functors. 

We have that U ° x 7  H ° --~ R°, and we shall say that/4° ---> Y is a representable 6tale 

covering of Artin's algebraic superspace Y. The dimension of an algebraic superspace Y 
is the dimension of H for a representable &ale covering/4 ° (it is independent of the choice 

of/4). 
In particular, the functor of the points 2(" of a superscheme 2( is an Artin's algebraic 

superspace, and 2( ~ 2(" embeds the category of superschemes as a full subcategory of 
the category of Artin's algebraic superspaces, that is, Horn(2(, 3;) = Horn(2( °, Y ' ) .  

Let Y be an Artin's algebraic superspace and U ° --> Y a representable 6tale covering. 
The &ale equivalence relation R=~/4 induces an 6tale equivalence relation R=~ U between 

the underlying ordinary schemes. 

Definition 6.4. The underlying Artin's algebraic space F to .Y" is the quotient sheaf of 

R° :::C U . .  

In what sequel, we shall identify a superscheme X with its corresponding Artin's algebraic 
superspace X ° and write simply X for any of them. 
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Theorem 6.2 can be now restated as a representability theorem: 

Theorem 6.5. The functor  S o f  SUSY curves o f  genus g > 2 with a level-n > 3 structure 

is representable by an Artin's algebraic superspace whose underlying Artin's algebraic 

space is the moduli scheme Ms o f  spin curves. That is, there is a fine moduli superspace 

fo r  SUSY curves o f  genus g >_ 2 with a level-n >_ 3 structure, and it is an Artin's algebraic 

superspace o f  dimension (3g - 3, 2g - 2). 

Let us consider the exact sequence of  algebraic spaces 

given by Theorem 6.2. If  (Xu~ figs, Ds) is the SUSY curve obtained in the proof of Lemma 6.1, 

there is a commutative diagram of algebraic superspaces 

X ~ X u ~  , Xs 

~ Hs > S 

where XT~ = Xus x Ms Us and &'s is the algebraic superspace obtained as the quotient of 

the &ale equivalence relation XT~ ~ Xus of superschemes. 

We easily prove that: 

Theorem 6.6. The sheaf  functor  S N o f  N-punctured SUSY curves o f  genus g >__ 2 with a 

level-n > 3 structure is representable by Artin's algebraic superspace X f f  . That is, there is 

a fine moduli superspace fo r  N-punctured SUSY curves o f  genus g > 2 with a level-n >_ 3 

structure and it is an Artin's algebraic superspace o f  dimension (3g - 3 + N, 2g - 2 + N). 

If we wish to consider only punctures corresponding to different points, we would have 

to restrict to the open subset of X N complementary of  all the diagonals. 

In the case of N-punctured SUSY curves, we prove directly from Theorem 6.2 that: 

Theorem 6.7. The sheaf  functor  S N o f  N-punctured SUSY curves o f  genus g > 2 with a 

level-n > 3 structure is representable by Artin's algebraic superspace S × Ms X : .  That is, 

there is a fine moduli superspace f o r  N-punctured SUSY curves o f  genus g > 2 with a level- 

n > 3 structure and it is an Artin's algebraic superspace o f  dimension (3g - 3 + N, 2g - 2). 

The underlying Artin 's  algebraic space to $ ×Ms XN is the moduli scheme X N of N- S S 

punctured spin curves of genus g >_ 2 with a level-n >_ 3 structure. 

7. The representability theorem for N-punctured SUSY curves 

An interesting question that arises now is to elucidate whether the algebraic superspaces 

S and S × Ms XN are superschemes. This question is still pending in the case of the moduli 

algebraic superspace S of SUSY curves, but as we shall see in this section, there is an 

affirmative answer in the case of N-punctured SUSY curves. Moreover, it turns out that the 

superscheme representing the functor of N-punctured SUSY curves is actually split. 
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Let us start by recalling that due to Theorem 4.3, there is a universal K/-punctured spin 

-curve (.~'Y / X y ,  #s) on the scheme X y .  Now, let us consider the relative Jacobian Jg-J = 

J g - l ( X s / M s )  and its canonical theta-divisor 69 = Wg_l. 

L e m m a  7.1. There exists an invertible sheaf L on f (N  in the class of  the universal element s 
frs that can be constructed from (9 in a natural way. 

Proof One can assume N = 1, since there is a projection X N --+ Xs. Let ] d  = jd ( - ~ s / X s ) .  

There is a commutative diagram 

Xs ~ - ~  f ig-  1 > j g -  1 

Xs Xs ~ Ms 

where r : Xs ~ ] g -  1 is the closed immersion defined by the diagonal 6 : Xs --+ Xs x Ms Xs; 
for closed points, r (x ,  xl)  is the divisor (x + (g - 2)xj, xj ) in the fiber o fx l .  

If tp • ~N __+ j is the composition morphism given by the top row of the above diagram, 

one easily checks that for every point xl 6 Xs the restriction of  qJ*(O) to the fibre of  xl 

has the form qJ*(O)lXsxlxt } = D + x l ,  where b is a semi-canonical divisor, 21) = K. The 
invertible sheaf L = O(~*(@))  ® O(3(Xs)) -1 fulfills the requirements. [] 

The invertible sheaf / ,  may fail to be a spin structure, but it is a canonical representant 

in the universal class Ts. We can then consider the following superscheme that remains the 
superscheme of  local spin-gravitino fields (Definition 5.4). 

Definition 7.2. The superscheme of/~/-punctured spin-gravitino fields is the split super- 
scheme 

x N = (Xs A ,(L ® , o ) ,  

where tc = K-N N and zr is the projection .k'Y ~ X y .  It has dimension (3g 3 + N, Xs / Xs 
2g - 2). 

O u r  next aim is to prove that the superscheme A's N is a moduli superscheme for the functor 

S N =-- S x Ms x N  of N-punctured SUSY curves. For the sake of  simplicity, we first consider 
the case N = 1. 

L e m m a  7.3. Given a trivializing covering p" Us --+ Ms of  the moduli scheme Ms of spin 

curves, there is a dtale covering Vs ~ Xu~ = p*(Xs) such that there is an isomorphism 

S T xx~ v~ - (S xg~ Xs) xx~ V~ ~-- Xs xx~ Vs 

of Artin's algebraic superspaces, commuting with the natural projections to Vs. 

Proof Let us write .~v~ -- -~s XM~ xUs = Xs XM~ xXvs .  The pull backs to Xws/Xv~ 

of (Xs /Xs , / , )  and (Xu, /Us,  Ks U2) are in the pull back of  the universal element Ts. Since 
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both define the same section of the sheaf of spin curves, there is an affine &ale covering 

Vs ~ Xu~ such that both become isomorphic spin curves after such a base-change. Let us 

denote by (Xv~, Ls) any of  these isomorphic SUSY curves, which can be considered as a 

punctured SUSY curve by means of  the canonical section 3s induced by the diagonal of 

(.,,is/XO. 
Since the Kodaira-Spencer map of the curve ( X v J  Vs) is an isomorphism, we can apply 

Theorem 5.5 to obtain a SUSY curve 

over the superscheme );s = (Vs, A zr,(L~ ® xxv,/v,)) extending (Xv,, O @ Ls) and that 
fulfills the hypotheses of Theorem 5.6. 

Proceeding as in the proof of Lemma 6.1, we define an isomorphism 

P ' S x M ~ V ~ V ,  

of sheaves on superschemes (actually of  algebraic superspaces) that commutes with the 

projections onto Vs. The natural identifications 8 XM~ Vs --~ (8  XM~ X~) xx~ Vs and Vs 

Xs x x~ V~ enable us to conclude the proof. [] 

As a consequence, the equivalence relation Vs x x~ V~ ::~ Vs --~ Xs induces a commutative 

diagram 

(8 XMs Xs) XX~ V s xxs Vs ~" (8 XMs Xs) Xxs V s ~ 8 XMs X s 

We have then: 

Theorem 7.4. The functor 8 ×Ms Xs of punctured SUSY curves of genus g > 2 with a 

level-n > 3 structure, is representable by the (3g - 2, 2g - 2)-dimensional superscheme 

Xs of punctured spin-gravitino fields. 

The case N > 1 is completely analogous and it leads to: 

Theorem 7.5. The functor S N of N-punctured SUSY curves of genus g > 2 with a level- 

n > 3 structure is representable by the (3g - 3 + N, 2g - 2)-dimensional superscheme 

X N of N-punctured spin-gravitinofields. 

This theorem says that there is a moduli superscheme X N for IV-punctured SUSY curves 
of genus g > 2 with a level-n >__ 3 structure. Since the moduli superscheme X N is actually 
split, this gives a partial answer to the splitness question for the moduli of  SUSY curves. 
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